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Antisense oligomers (ASOs) represent a promising technology 
to treat viral and bacterial infections, and have already been 
shown to be successful against a variety of pathogens in cell 
culture studies and nonhuman primate models of infection. For 
these reasons, antisense technologies are being pursued as 
treatments against biothreat agents such as Ebola virus, 
dengue virus and Bacillus anthracis. Several generations of 
modified oligonucleotides have been developed to maximize 
nuclease resistance, target affinity, potency, cell entry, and 
other pharmacokinetic properties. First-generation ASOs 
contain phosphorothioate modifications to increase stability 
through nuclease resistance. Further chemical modifications in 
second-generation ASOs include 2'-O-methyl and 2'-O-
methoxy-ethyl oligos, which increase nuclease resistance and 
oligo:RNA binding affinities. Third-generation ASOs contain a 
variety of chemical modifications that enhance stability, 
affinity and bioavailability. A fourth class of oligonucleotide-
based compounds consists of small interfering RNAs, which 
have recently become widely used for gene knockdown in vitro 
and in vivo. This review focuses on the third-generation 
phosphorodiamidate morpholino oligomers, which are nonionic 
and contain a morpholine ring instead of a ribose, as well as 
phosphorodiamidate linkages in place of phosphorothioates. 
Multiple antisense oligomer-based therapeutics are being 
developed for use against biothreat agents, and antisense drugs 
will likely become a critical member of our arsenal in the 
defense against highly pathogenic, emerging or genetically 
engineered pathogens. 
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Introduction 
Many viral and bacterial agents have a history of state-
sponsored 'weaponization', including Marburg, Ebola, 
Junin, Machupo, yellow fever viruses and smallpox, as well 
as Bacillus anthracis, Yersinia pestis and Francisella tularensis 
[1-5]. These agents are considered serious public health 
threats, are handled under biosafety level (BSL)-3 or -4 
conditions [6], and are listed as potential biothreat agents by 

the National Institute of Allergy and Infectious Diseases 
(http://www3.niaid.nih.gov/Biodefense/bandc_priority.htm). Features 
that characterize a pathogen as a serious bioweapon threat 
include high morbidity and mortality rates, the potential for 
person-to-person or aerosol transmission, low infective dose, 
stability, and the feasibility of large-scale production. 
Unfortunately, many of the biothreat agents are also 
characterized by a lack of available vaccines, prophylactics 
or treatments, and so developing preventatives and 
therapeutics against these dangerous organisms has become 
a high public health priority in recent years [7•]. 
 
Since the first use of antisense oligomers (ASOs) for 
inhibiting Rous sarcoma virus replication in cell culture 
[8,9], there has been a keen interest in developing ASO 
therapeutics. ASOs function by binding complementary 
sequences of RNA, and inhibiting gene expression in a rapid 
and highly specific manner. The manner in which they 
inhibit expression of the target gene has made them 
powerful tools to dissect critical pathways, and also as 
potential drugs for targeting host and pathogen genes. Here, 
we will provide a representative, but not exhaustive, 
presentation of ASOs in development as therapeutics, and 
provide information on advances made in the ASO field for 
use against biothreat agents. 

Antisense oligonucleotides 
First-generation antisense oligomers 
Unmodified oligodeoxynucleotides are highly unstable in 
bodily fluids because of their rapid degradation by 
nucleases (Table 1). To enhance oligomer stability, 
replacement of a nonlinking oxygen atom with sulfur within 
the phosphodiester linkage of each nucleotide renders first-
generation antisense phosphorothioate oligomers (PTOs) 
inefficient substrates for both endo- and exo-nucleases 
(Table 1) [10]. PTOs inhibit gene expression after binding to 
the target mRNA, and thereby direct the mRNA for RNase 
H degradation as a result of the formation of the 
PTO:mRNA duplex. To mediate efficient suppression of 
fully complementary mRNAs, optimal PTOs are 15 to 21 
nucleotides long; however, transient hybridization can occur 
between the ASO and mRNAs with short complementary 
sequences, and DNA:RNA heteroduplexes as short as five 
nucleotides can initiate RNase H1-mediated degradation of 
the RNA component [11-14]. 

Second-generation antisense oligomers  
A second-generation approach to ASO design incorporates 
further modifications to the inter-nucleoside ribose-phosphate 
linkages to improve the affinity, stability and activity of these 
drugs (Table 1). 2'-O-(2-Methoxy)ethyl (2'MOE)-modified 
oligonucleotide:RNA heterodimers are not substrates for 
cleavage by RNase H. Therefore, mRNA cleavage is limited to 
a short stretch of phosphorothioate nucleotides  
with unmodified sugars at the center of the ASO [15-17]. 
PTOs with 2'MOE 'wings', consisting of five 2'MOE-modified  
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phosphorothioate-linked nucleotides at both the 5' and 3' ends, 
bind more strongly to RNA and deplete target mRNAs more 
potently than their 2' unsubstituted analogs [18-20]. Many other 
possible backbone modifications have been explored for RNase 
H-dependent ASO drugs, such as locked nucleic acid (LNA), 
PTO with RNase-incompetent methylphosphonate nucleotides, 
or 2'MOE modifications in the middle of a PTO [21-23]. Of 
these, 2'MOE-winged PTOs appear to be the most promising 
and thoroughly developed PTO-based therapeutic. In fact, the 
first antisense drug approved by the FDA, fomivirsen, is a 
2'MOE PTO designed to treat cytomegalovirus-induced retinitis 
in AIDS patients [24]. 

Third-generation antisense oligomers  
Another major class of ASO compounds, 
phosphorodiamidate morpholino oligonucleotides (PMOs), 
achieve nuclease resistance by incorporating nucleosides 
with a morpholino instead of ribose backbone, and also 
utilize uncharged internucleoside phosphorodiamidate 
linkages (Table 1) [25]. RNA:PMO hybrids are not generally 
substrates for RNase H cleavage, but suppress mRNA 
targets through high-affinity binding at the sites of 
ribosomal entry, mRNA processing, or by blocking the 
formation of important secondary structural elements [26-
29]. Therefore, PMOs are generally designed to target 
important translational signals, such as the AUG start site or 
secondary structures immediately 5' or 3' of the AUG start 
site. The neutral chemistry of PMOs confers many desirable 
safety and pharmacokinetic properties compared with other 
ASOs, including avoidance of non-specific binding to host 
proteins and excellent resistance to nucleases and proteases 
(Table 1). The nonionic characteristics of PMOs have been 
suggested to hinder cellular uptake compared with 
previous-generation negatively charged ASOs. However, 
this aspect of PMO chemistry does not appear to affect in 
vivo efficacy and may be an artifact of cell lines, since PMOs 
readily enter primary cells [27]. Additionally, conjugation 
with specific peptide tags such as arginine-rich peptides 
increases PMO entry into cells [30,31••]. PMOs promise a 
simple method of antisense drug design, and a drug 
platform that is cheaper to produce than phosphorothioate-
based ASO drugs [32]. 

RNA interference  
In recent years, small interfering RNA (siRNA) has been 
developed as a powerful gene silencing platform both in 
vitro and in vivo (Table 1) [33]. The RNA interference 
pathway through which siRNAs are recognized in the 
cytoplasm, cut into short fragments, and catalytically 
utilized by cells to degrade other complementary transcripts 
in the nucleus, is well understood and described elsewhere 
[34-36]. Rapid tail vein injections of unmodified siRNA in 
mice have proved efficacious [37,38]. However, other routes 
of administration have not been as successful in vivo, 
seemingly as a result of rapid degradation of unmodified 
siRNA molecules in mammals [39]. However, introducing 
chemical modifications at the 3' ends of both siRNA strands 
confers in vivo stability [40••]. Ongoing clinical trials will 
shed light on the potential of siRNAs for use as therapeutics. 

Potential of antisense oligonucleotides as 
therapeutics 
The use of ASOs as therapeutics relies upon specific 
hybridization of the oligomers to the target mRNA, the 
capacity of the ASO:mRNA complex to inhibit gene 
expression, and sufficient biological stability and activity of 
the ASOs in vivo. While many of the lead candidate ASO-
based therapeutics are highly specific and effective in 
inhibiting gene expression of the target of interest in vitro, 
there are many potential barriers toward in vivo efficacy for 
this class of therapeutics. After in vivo administration, the 
ASO must penetrate multiple barriers, gain entry to the 
desired area of the body, enter the target cells, and localize 
to the intracellular compartment necessary for inhibiting 
gene expression. Throughout this process, the ASO must 
remain intact by avoiding nuclease degradation and not be 
cleared from the body before gene knockdown occurs. 
Furthermore, especially for bacterial pathogens, the ASO 
may have to traverse within the pathogen to target the 
pathogenic mRNAs. 
 
Among the ASOs, the pharmacokinetics of PTOs and 
modified PTOs in humans are fairly well understood. 
Intravenously administered PTO and 2'MOE-modified 
phosphorothioate (PS) oligonucleotides distribute primarily 
to highly perfused tissues (the liver, kidneys, bone marrow, 
skin and skeletal muscles), with only about 1% of the 
oligomers remaining available in the plasma [41-44]. 
Intravenous administration of PTO compounds may be 
limited by distribution mainly to highly vascularized tissues 
due to promiscuous interactions with serum proteins via 
their polyanionic backbone [45]. Encouragingly, 
administering PTOs subcutaneously rather than 
intravenously results in a much higher plasma concentration 
[46]. Three days after subcutaneous administration of PTOs 
to humans, up to 30% of PTO remains in the plasma. For this 
reason, subcutaneous administration may become the 
preferred method for delivering PTO-based drugs [46]. First- 
and second-generation PTOs have shown promise in vivo 
against fulminant hepatitis and hepatitis C virus infections 
[20,47], as well as non-liver diseases such as cancers, 
through the inhibition of various targets, including protein 
kinase C-α (aprinocarsen), Bcl-2 (oblimersen; Genta Inc), Raf 
kinase (ISIS-5132), Ha-ras (ISIS-2503), RIα regulatory subunit 
of cAMP-dependent protein kinase type I (Gem-231) and 
clusterin (OGX-011; OncoGenex Technologies Inc) [48]. 
However, multiple reactions to PTOs during human clinical 
trials have been observed, including pronounced 
cardiovascular responses, activation of the complement 
cascade, thrombocytopenia, hyperglycemia and hypotension 
[49]. 
 
PMOs have been safely employed in more than 12 clinical 
trials involving over 300 individuals without adverse drug-
related events occurring [49-51]. These initial clinical studies 
have also demonstrated pharmacokinetic elimination half-
lives in humans of 1 to 20 h [49]. The potential toxicity of 
PMOs has been evaluated in mice, rats and nonhuman 
primates, and the only noted toxicity to date is the transient 
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appearance of basophilic granules in macrophages, Kupfer 
cells and other phagocytic cells in lymph nodes when PMOs 
are administered for at least 14 days [27]. PMO sequences 
have also been evaluated in Good Laboratory Practice 
genotoxicity batteries with no observed mutagenesis [27]. 
 
In vivo studies of siRNA biodistribution in mice show a 
similar profile to other classes of oligonucleotide drugs [52]. 
However, to date, there is only one report of a siRNA-based 
drug being used in humans; Sirna-027 (Sirna Therapeutics 
Inc/Allergan Inc) targets vascular endothelial growth factor 
receptor-1, a receptor involved in angiogenesis. The 
company aims to use this drug to treat age-related macular 
degeneration [53•]. Encouragingly, in six of seven patients 
treated with a single, intravitreal dose of Sirna-027, there 
was a reduction in retinal thickness [53•]. However, because 

the siRNAs were directly injected into the eye, it may be 
difficult to extrapolate these findings to systemic siRNA 
treatment of humans. 

Antisense treatment of viral infection 
At the beginning of antisense research, the first  
investigators tested whether Rous-sarcoma-virus-
complementary oligonucleotides could interfere with viral 
amplification [8,9]. Since then, gene knockdown using ASOs 
against a variety of agents has been demonstrated to be 
quite effective in squelching viral amplification (Table 2). 
More recently, interest in using ASO-based approaches 
against biothreat agents has peaked, and several new reports 
provide evidence that ASO therapeutic candidates will be 
effective for treating acute viral diseases such as Ebola and 
dengue (Table 2). 

Table 2. Summary of studies of antisense efficacy against viral agents.  
Virus Antisense type Model inhibition 

demonstrated 
  References 

Avian myeloblastosis virus Unmodified and modified antisense 
oligodeoxynucleotides 

In vitro [83,84] 

Calcivirus PMO Cell culture [85] 
Coronavirus (including SARS) PMO 

siRNA 
Cell culture, nonhuman 
primates [28,86,87•] 

Encephalomyocarditis virus Antisense oligonucleotides Cell-free rabbit reticulocyte 
lysates [88] 

Ebola virus PMO In vitro, cell culture, rodents, 
nonhuman primates [60,61] 

Epstein-Barr virus PTO Cell culture [89,90] 
Equine arteritis virus PMO In vitro, cell culture [91] 
Flaviviruses (ie, dengue and  
West Nile viruses) 

PMO In vitro, cell culture [65-68,69•] 

Friend retrovirus Oligonucleotides Cell culture [92] 
HBV Unmodified or chimeric DNA-RNA PTOs 

siRNA 
In vitro 

[93-96] 

HCV PNAs and LNAs 
2'-O-methyloligoribonucleotides 

In vitro 
[97,98] 

HIV LNA/DNA chimeric oligomers 
2'-O-methyloligoribonucleotides 
Methylphosphonate-phosphodiester hybrid  
oligonucleotides 
Phosphate-methylated DNA 
Unconjugated and conjugated PTOs 
Methylphosphonate oligodeoxynucleotides 

In vitro, cell culture 

[10,93,99-114] 

HSV Polyalkylating single-stranded oligomers 
Unconjugated and conjugated PTOs 
2'-O-methyloligoribonucleoside 
methylphosphonate oligos 

Cell culture 

[115-119] 

Infectious hematopoietic  
necrosis virus 

PMO Cell culture [120] 

Lentiviruses Phosphorothioate ON Cell culture [121] 
Mouse leukemia virus Modified and unmodified PTOs Cell culture and mice [122] 
Respiratory syncytial virus Modified and unmodified PTOs In vitro, cell culture,  

non-human primates [123••] 

Retroviruses PTO Cell culture [121] 
Tobacco mosaic virus Complementary ODN In vitro [124] 
Vesicular stomatitis virus Unconjugated and conjugated PTOs 

Methylphosphonate oligonucleotides 
Cell culture 

[117,125-127] 

Vesiviruses PMO Cell culture [128•] 
 
HBV hepatitis B virus, HCV hepatitis C virus, HSV herpes simplex virus, LNA locked nucleic acid, ODN oligodeoxynucleotide, ON 
oligonucleotide, PMO phosphorodiamidate morpholino oligomer, PNA peptide nucleic acid, PTO phosphorothioate oligomers. 
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Development of antisense treatments for filovirus 
infections  
The filoviruses, Ebola (EBOV) and Marburg (MARV), are 
highly virulent and cause acute, severe hemorrhagic fever in 
humans and nonhuman primates. Although filovirus 
infection most often leads to death, it is not uniformly lethal 
in humans. Numerous studies clearly demonstrate that the 
survival of an infected individual or animal is critically 
dependent on the ability of the host's innate and adaptive 
immune responses to control rapid viral growth [54-57]. 
Thus, host- or virus-targeted therapeutics that could curb 
filovirus replication until generation of an effective host 
immune response may prove efficacious in prevention of 
lethal disease. MARV and EBOV have a 19-Kb, negative-
sense, single-stranded RNA genome that encodes for 
nucleoprotein (NP), glycoprotein (GP), four viral proteins 
(VP), and RNA-dependent RNA polymerase (L protein) [58]. 
Successful transcription and replication of the viral genome 
depends on coordinated action of L, NP, VP30 and VP35 
proteins. The VP24 and VP40 proteins coordinate budding 
of the virions from the cell, where the GP is incorporated 
into the membrane during capsid formation [58]. 
 
Currently, there are no available vaccines or therapeutics for 
treating EBOV infections in humans. Although many 
different strategies have been attempted, only the 
administration of a recombinant tissue Factor VIIa inhibitor 
is protective in 33% of treated nonhuman primates [59]. 
Recently, Warfield et al and Enterlein et al described 
successful strategies for interfering with EBOV infection in 
vitro and in vivo by using untagged and peptide-tagged 
PMOs [60••,61]. Therapeutic administration of a single 
untagged or peptide-tagged PMO targeting the viral VP35 
mRNA significantly reduced viremia and resulted in 100% 
survival in EBOV-infected mice [60••,61]. A combination of 
EBOV-specific, untagged PMOs targeting VP24, VP35 and 
RNA polymerase L protected mice and guinea pigs in both 
pretreatment and post-exposure therapeutic regimens 
[60••]. In a prophylactic proof-of-principal trial, the PMOs 
also protected 75% of rhesus macaques from lethal EBOV 
infection [60••]. Screening studies for efficacious PMOs 
against MARV have yielded positive results in the guinea 
pig model and, to date, we have identified more than five 
compounds that resulted in high levels of survival in initial 
studies [Warfield KL, unpublished data]. 
 
siRNAs are also expected to provide robust treatment 
options for hemorrhagic fevers because siRNAs act in a self-
amplifying enzymatic manner. The inhibition of filovirus 
amplification by siRNAs was demonstrated by targeting 
VP30, VP35, and the NP of MARV [62]. Recently, siRNAs 
targeting the EBOV L protein were shown to inhibit EBOV 
replication in vitro, as well as providing post-exposure 
protection to guinea pigs infected with EBOV [63]. Future 
studies in nonhuman primates may reveal the therapeutic 
potential of siRNA treatment of humans with filovirus 
infections. 

Antisense treatment for flavivirus infections  
The family Flaviviridae includes highly pathogenic viruses 
such as West Nile, yellow fever, dengue and Omsk 

hemorrhagic fever. The flaviviruses are encoded by a single-
stranded, positive-sense RNA genome, and are 
characterized by an isometric, enveloped virion. Dengue 
virus is the only flavivirus considered a Category A biodefense 
threat by the National Institute of Allergy and Infectious 
Diseases (http://www3.niaid.nih.gov/biodefense/bandc_priority.htm). 
However, it was excluded as a biowarfare threat by the 
American Medical Association Consensus group because it 
is not transmissible as a small-particle aerosol, and primary 
dengue infections are only rarely fatal [1]. Dengue virus 
causes 100 million cases of dengue fever and > 500,000 cases 
of hemorrhagic fever in humans each year in more than 112 
countries [6,64]. Dengue-virus-infected patients present with 
a variety of symptoms from undifferentiated fever, 
hemorrhagic fever, or a 'shock-like' syndrome. 
 
A series of peptide-conjugated (P-) PMOs have been 
screened and several are highly effective at inhibiting 
dengue viral replication by targeting RNA replication, 
translation of viral proteins, or both [65,66] Among the 
PMOs tested is the 3'-cyclization sequence (3'CS), which is 
designed to bind to a perfectly conserved sequence at the 3' 
end of the viral genome required for circularization and 
replication of the dengue virus genome [67,68]. 
Encouragingly, the 3'CS P-PMO was able to effectively 
reduce viral titers to nearly undetectable levels for all four 
serotypes [65]. Other PMOs targeting a 5'-stem-loop (5'SL) 
and a 3'-stem-loop (3'SL) were also effective in inhibiting 
viral replication [65,66]. These studies are informative both 
from a therapeutic design standpoint, and in revealing 
portions of the flavivirus genome that regulate dengue virus 
replication. PMOs are also effective in viral suppression of 
West Nile virus, another flavivirus, by blocking viral 
translation and RNA replication [69•]. 

Antisense molecules as antibacterials  
Because of the emergence of antibiotic-resistant strains of 
bacteria, it is imperative that novel antibacterials are 
developed, especially ones that are effective against a broad 
range of bacterial agents. To date, the development of a new 
chemical class of antisense antibacterials is still in its infancy 
but has shown some promise against certain bacterial agents 
[70,71]. Synthetic ASOs, called peptide nucleic acids (PNA) 
can inhibit the expression of Escherichia coli bacterial genes 
both in vitro and directly in the organism [72,73]. However, 
the entry of PNA is inefficient because of the 
lipopolysaccharide layer of the outer membrane of Gram-
negative bacteria [74]. Antisense PMOs have limited cellular 
uptake in E coli but can efficiently inhibit targeted gene 
expression in mutant E coli cells that have a leaky outer 
membrane [75]. The feasibility of using ASOs as 
antimicrobial agents against Gram-positive bacteria was 
recently demonstrated for the infectious agent 
Mycobacterium tuberculosis. Targeted knockdown of 
glutamine synthetase mRNA by using phosphorothioate-
modified antisense oligodeoxyribonucleotides modestly 
inhibited glutamine synthetase activity, formation of the cell 
wall structure, and bacterial replication [76]. In search of 
more promising targets of M tuberculosis, PTOs targeted 
against the 30/32-kDa mycolyl transferase complex showed 
increased inhibition of bacterial growth [77]. 
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A major limitation of ASOs and their derivatives as gene-
silencing agents is their poor uptake by target organisms. 
Studies have shown that altering the length and target position 
of antisense PMOs can enhance uptake and inhibit gene-
specific expression in E coli [78]. Shorter PMOs (approximately 
9 to 12 bases in length) effectively inhibit target gene expression 
in E coli culture, while longer PMOs (~ 20 bases) showed better 
inhibitory activity in cell-free expression systems than in culture 
[78]. A short, 11-base PMO targeted to an E coli essential gene 
relating to phospholipid biosynthesis (acpP) inhibited bacterial 
growth in culture and in infected mice [70]. Efficient delivery 
into cells can also be enhanced by conjugating synthetic 
oligonucleotides with peptides [31••,79,80]. Coupling peptides 
to PNA enhanced the entry of the antisense molecules and 
reduced expression of the bacterial target genes both in E coli 
[81] and Staphylococcus aureus [82]. Peptide-tagged PMOs can 
also efficiently inhibit bacterial growth in pure and infected 
cultures [75]. In a recent study, we observed that peptide-
tagged PMOs could inhibit the outgrowth of Sterne strain of B 
anthracis (Figure 1) [Panchal RC, et al, unpublished data]. 
Studies are ongoing to determine the specificity of the target 
PMOs and their effect on the virulent Ames strain of B anthracis. 
While the application of antisense antibiotics to the treatment of 
bacterial infections looks promising, a number of issues, such as 
specificity, optimal size, uptake, mechanism of action, and their 
efficacy in animal models remain to be addressed. 

Figure 1. Peptide-tagged PMOs inhibit outgrowth of B 
anthracis.  

Untreated
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An arginine-rich peptide-tagged PMO was incubated with B 
anthracis (Sterne strain) and growth of the bacteria was assessed 
by light microscopy after 4 h.  
 

Host-directed antisense-based therapeutics 
against biothreat viral agents  
The explosion of discoveries in the area of cellular 
machineries and signal-transduction pathways in the past 
decade has had an enormous impact on medicine. Several 
new FDA-approved anticancer drugs (imatinib, erlotinib, 
gefitinib, trastuzumab and rituximab) have emerged from 
these studies, underscoring the importance of a deep 

understanding of cellular pathways for countermeasure 
development. While cellular pathways involved in 
tumorigenesis have been extensively studied, our 
understanding of the host pathways in the pathogenesis of 
viruses is still lagging behind. Understanding the cellular 
machineries involved in the entry, uncoating, replication, 
assembly and budding of viruses, as well as delineating the 
signaling pathways governing the genesis of the innate 
immune response to pathogens or subversion of such 
pathways by viruses, will be key to devising such novel 
host-targeted therapeutics. A major challenge in studying 
signaling pathways, in particular in complex systems such 
as host-pathogen interactions, is the concurrent activation or 
modulation of multiple cascades and cross-talk between 
individual pathways. In this regard gene knockdown 
technologies will be invaluable as a therapeutic option as 
well as a tool for delineating complex cellular pathways. 
 
PMO oligonucleotides are prime candidates for such 
applications due to their ability to effectively downregulate 
the expression of cellular genes. Our studies show that 
PMOs can readily enter primary human cells such as 
dendritic cells, monocytes and natural killer cells (Figure 2A 
to C). We were able to effectively block the expression of 
several cellular genes by using PMOs, including vacuolar 
protein sorting (VPS)-4 (Figure 2D). Given the demonstrated 
efficacy of PMOs as gene-targeted drugs in higher animals 
[60••], this class of compounds represents a promising 
approach for developing host-targeted, broad-spectrum 
antiviral therapeutics. One can envision a variety of cellular 
targets for PMO antiviral therapeutics, including virus 
receptors, proteolytic enzymes involved in budding and the 
release of virions from infected cells, cellular signaling 
molecules, and components of endocytic and vacuolar 
protein sorting machinery. 
 
PMOs can also be used to delineate complex signaling 
pathways involved in host-pathogen interactions. Combined 
with global systems biology-based approaches, specific gene 
knockdowns using PMOs will allow us to closely examine 
complex and interconnected biological pathways and to 
obtain a global view of the cellular processes during host-
pathogen interactions. Information extracted from such 
studies can be fed into bioinformatics and computational 
tools to create preliminary models of combined pathogen 
and host response systems or pathways to distill common 
pathogenic and protective mechanisms. These models can 
then be exploited to design novel therapeutic modalities for 
broad-spectrum antivirals. 

Conclusion 
Currently, multiple viral and bacterial agents represent the 
most likely bioterrorism or biowarfare threats by intentional 
transmission or natural outbreaks of disease. Furthermore, 
emerging and dangerous viral and bacterial infections 
continue to appear throughout the world, and pose 
legitimate worldwide health threats. While vaccination is 
invaluable as a defensive resource, prophylactic measures 
may encounter public resistance and may not meet the risk-to-
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Figure 2. Entry of PMOs into human cells. 
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(A) HeLa cells were treated with 2 µM fluorescein-tagged PMO, with or without peptide conjugation, and analyzed by flow cytometry after 2 h (white 
bars), 24 h (grey bars), or 48 h (black bars). (B) Entry of fluorescein-tagged PMOs into human dendritic cells, measured by flow cytometry as the 
fluorescence intensities (FL1-Height) of cells per microliter (Counts): filled trace = medium control; green trace = 2 h arginine-rich peptide-tagged 
PMO; red trace = 24 h arginine-rich peptide-tagged PMO; blue trace = 24 h unconjugated PMO. (C) Uptake of PMO in dendritic cell visualized by 
confocal microscopy: red, golgi and endoplasmic reticulum staining; green, PMO; yellow, merge (colocalization); blue, nuclear staining. (D) Western 
blot demonstrating that treating dendritic cells with a PMO targeted against human VPS4 gene, but not a control PMO, completely blocked VPS4A 
expression. Interestingly, this treatment forced the ribosomes to initiate transcription from a downstream in-frame ATG site, creating a potential 
dominant negative. Lower band, alternate open reading frame (Alt. ORF). Inhibition was seen as early as 24 h post-treatment and lasted for 72 h. 
 

benefit ratio for vaccinating healthy individuals. Therefore, 
the most effective means of saving lives in case of an attack 
with a biological agent is a variety of therapeutic drugs for 
treating potentially exposed or ill patients in concert with 
prophylactic drugs and vaccines for unexposed or recently 
exposed populations. With the availability of rapid 
diagnostics and sequencing of biological agents, the 
causative agents in intentional or natural outbreaks of 
disease should be readily identified and antisense drugs 
could be quickly designed, if they are not already available. 
However, as viruses have multiple genes, a number of target 
sequences for each gene must be screened to identify an 
effective inhibitor. Therefore, the process of designing an 
effective antisense-based antiviral may involve the synthesis 
and screening of many candidates. Based on the current lack 
of therapeutics for most of the biothreat agents, antisense 
oligomer-based drugs represent one of the most efficient 
means of addressing emerging infectious diseases in a 
timely manner. The promise of specific and relatively safe 
therapeutics based on antisense technologies has led to 
recent advancements for developing treatments for diseases 
caused by biothreat pathogens, including Ebola and dengue 
viruses, as well as highly virulent bacterial agents. 
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